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Space-Time Isomorphism Problem is Intractable 
(NP-Hard) 
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The problem of whether or not two different mathematical models of space-time 
describe the same space-time is not trivial. For example, the first spherically 
symmetric solution--the Schwarzschild metric~escribes only part of the process 
of falling into a black hole, and other metrics were discovered for the same 
situation that also describe the subsequent events. These metrics turned out to 
be isomorphic in the sense that some 1-1 correspondence (coordinates trans- 
formations) transform one into another. But in the general case to find whether 
such an isomorphism exists is a difficult computational problem. There are some 
algorithms for smooth metrics, but the problem is also important for the non- 
smooth metrics involving singularities. We prove that in the general case this 
isomorphism problem is intractable. 

1. I N T R O D U C T I O N  

W h e n  physicists  analyze  p rob l ems  in space- t ime physics,  they solve the 
co r r e spond ing  equat ions  and of ten find several  solut ions.  The  equa t ions  for  
space- t ime geomet ry  are difficult, so there is no  rou t ine  way  to f ind solut ions ;  
therefore  physicis ts  t ry to app ly  new ideas, e.g., by  impos ing  symmet ry  or  
some special  a lgebra ic  s t ructure  [for a survey see, e.g., K r a m e r  et al. (1980)]. 
Different  app roaches  of ten lead  to solu t ions  expressed by  different  formulas .  
Therefore ,  if  someone  presents  a new solut ion,  it is necessary to figure out  
whether  this is real ly a new space- t ime mode l  or  this new solu t ion  is iso- 
m orph i c  to one o f  the a l r eady  k n o w n  ones in the sense tha t  some coord ina t e  
t r ans fo rma t ion  turns  the first so lut ion into the second one. 

This  p r o b l e m  dates  back  to Christoffel  and  since then several  a lgor i thms  
have been p r o p o s e d  and  successfully used (see, e.g., Misner  et al., 1973; 
M acCa l lum,  1986, 1988; K a m r a n ,  1988), bu t  they are  not  a lways  appl icable .  
This  p rob l em has  a l ready  been solved for  the ma in  so lu t ions  o f  general  
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relativity, but in general no efficient algorithm is known (MacCallum, 1988) 
and this problem still presents a real challenge in case one analyzes altern- 
ative theories like the scalar-tensor theory of gravitation, even if one analyzes 
spherically symmetric solutions (Bharma et al., 1978; Pandey et al., 
1983). This "equivalence" problem is conjectured to be difficult to solve 
(MacCallum, 1988). 

In the present paper we prove that this isomorphism problem is in the 
general case really intractable. Following the usage of computer science 
(Garey and Johnson, 1979), we call a problem intractable if the possibility 
of an algorithm that solves this problem in feasible time would lead to the 
reasonable-time algorithm for solving practically all discrete problems, 
which is commonly believed to be impossible. The main result of this paper 
was announced in Kreinovich (1989). 

2. H O W  TO F O R M U L A T E  THIS I S O M O R P H I S M  P R O B L E M  
IN M A T H E M A T I C A L  TERMS: DISCUSSION 

The first idea that naturally comes to mind is to formulate this problem 
as looking for an isomorphism, i.e., 1-1 correspondencef between the points 
of the two given models, such that the distances d(a, b) and d(fa, fb)  between 
the corresponding pairs of points coincide. However, the real physical prob- 
lem is more complicated. 

First of all, when physicists ask whether the two given solutions repre- 
sent the same space-time or not, then by "the same space-time" they mean 
not only the possibility to establish a 1-1 correspondence between the points 
of the corresponding spaces. For example, the original Schwarzschild metric 
describes only the behavior of the particle falling on a black hole, and the 
Robertson metric describing also its further expansion into some other space 
surely describes the same space-time--although in this case 1-1 correspond- 
ence does not exist: there is no analog of these expansion-stage points in the 
original Schwarzschild solution. So in reality when we ask the question about 
the isomorphism we really have in mind the possibility or impossibility of 
imbedding one of the models isomorphically into another. 

Second, all the existing methods of checking isomorphism are known 
for the smooth case [see, e.g., the survey by MacCallum (1988)], but this 
question is also very important near the singularity, where, strictly speaking, 
the formalism of pseudo-Riemannian geometry is no longer applicable. So 
it is necessary to formulate this problem (and try to solve it) in the most 
general way, without assuming that the metrics depend smoothly on coordi- 
nates and even--in view of the possible quantum models of space-time-- 
that such coordinates exist at all. 
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A natural nonsmooth generalization of the notion of  a normal (positive- 
definite) Riemann space is the notion of a metric space: for every Riemann 
space we can define the distance d(a, b) between two arbitrary points a and 
b as a minimal length of all the curves connecting a and b. Due to this 
definition this function d(a, b) satisfies the well-known properties of symme- 
try d(a, b)= d(b, a), d(a, a )=  0, d(a, b)> 0 for different a and b, and the 
triangle inequality that d(a, c) does not exceed d(a, b) + d(b, c) for all a, b, c. 
Then as a natural generalization of a Riemann space we can consider arbi- 
trary metric spaces, i.e., spaces on which the function d satisfying these 
conditions is defined. 

For pseudo-Riemann spaces the natural analogue of the metric is the 
proper time t(a, b) between the events a and b, i.e., the maximal proper time 
along all the timelike curves that connect a and b. This quantity is defined 
only if a causally precedes b (denoted a < b) ; for the pairs a, b for which no 
such connection is possible, t(a, b) is formally defined as 0. This function 
satisfies the following properties: 

(i) t(a, a)=0 .  
(ii) The relation t(a, b) > 0 is an ordering relation. 

(iii) If t(a,b)>O and t(b,c)>O, then t(a,c) is not less than 
t(a, b) + t(b, c). 

So a natural generalization of pseudo-Riemann spaces to the non- 
smooth case is the space with a function t satisfying these three properties. 
Such spaces were introduced in Busemann (1967) and Pimenov (1970) (see 
also Kreinovich, 1974, 1979a,b). Therefore, we will formulate the isomorph- 
ism problem for such spaces. 

A special case is when we compare static models, for which it is reason- 
able to speak about proper space. Then these proper spaces are just metric 
spaces, and our problem transforms into the following one: to find whether 
two given metric spaces are isomorphic or not. 

Moreover, quantum considerations can lead to space-time models to 
which the notion of metric is not applicable at all because in the case of 
strong quantum fluctuations there is no way to measure time at all and hence 
no sense of speaking about the metric; see, e.g., the last chapters of Misner 
et al. (1973). In these cases the model of space-time is formulated only in 
terms of a causality relation <, that is, from a mathematical viewpoint, just 
an ordering relation. So we must analyze the problem of  isomorphism also 
for this case. 

One last simple, but important remark: we are talking about algo- 
rithms; real algorithms stop after finitely many computational steps, during 
which they can read only finitely many values d(a, b) or t(a, b), so they can 
read the data only about finitely many points. So in reality any algorithm 
for checking isomorphism checks the isomorphism of finite sets of events. 
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The real space-time, however, is normally believed to be infinite. So real 
algorithms give only approximate answers to the question of whether two 
given space-time models are equivalent or not (of  course, the more points 
we take into consideration, the more accurate is the result). In view of  this, 
we consider only finite sets. 

For  the same reason, the computer can process .only finitely many digits 
of  the value of  each of  the distances, so the results of  the algorithms are the 
same as when all distances are binary-rational numbers. Therefore, it is 
sufficient to consider only the case when all the distances are rational 
numbers. 

3. M A T H E M A T I C A L  F O R M U L A T I O N  

Definitions 

1. By a f inite metric space we mean a pair consisting of  an integer n 
and a matrix with nonnegative rational elements d(ai, ~.), i, j = 1, 2 . . . .  , n, 
such that: 

(a) d(ai, aj) = 0 iff i =j.  
(b) d(ai, aj) = d(aj, ae) for all i, j. 
(c) For  all i , j , k  the value d(ag, ak) is less than or equal to 

d(ai, a/) + d(aj, ak). 

2. By a f inite space-time model we mean a pair of  an integer n and a 
matrix with nonnegative rational elements t(ai, aj), i, j = 1, 2 . . . . .  n, such 
that: 

(a) t(ai, ai)= 0 for all i. 
(b) For  all i , j ,  if t(ai, aj) >0,  then t(aj, a i )=0 .  
(c) If  t(ai, aj) > 0 and t(aj, ak) > 0, then t(a~, a~) is greater than or equal 

to t(a~, aj) + t(aj, ak). 

3. By a f inite causal model we understand a pair of  an integer n and a 
matrix C(a~, aj), i, j =  1, 2 . . . . .  n, with elements 1, - 1 ,  and 0 such that: 

(a) C(ai, a~) =0  for all i. 
(b) C(a~, a/)= -C(aj, a,). 
(c) If  C(a~, aj )= 1 and C(aj, ak) = 1, then C(a~, a~) = 1. 

Comment. C(a, b) = 1 means a > b ,  C(a, b ) = - I  means a < b ;  the condi- 
tions (a)-(c) mean that > is an ordering relation. 

Definitions 

1. By a mapping f :  A ~ A '  of two finite sets we mean a mapping that 
assigns to every a; from A some element f ( a i ) =  a* from A'. 
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2. We say that a mapping f :  A~A'  is an isomorphic imbedding of: 
(a) Finite metric spaces, if d(fa,fb)= d(a, b) for all a, b. 
(b) Finite space-time models if t(fa, fb) = t(a, b) for all a, b. 
(c) Finite causal models if C(fa,fb) = C(a, b) for all a, b. 

Comment. The last condition means that fa <fb iff a < b. 

4. MAIN RESULT 

Preliminary Remark. We want to prove that the problem of figuring 
out whether the two given space-time models can be isomorphically 
imbedded into each other is intractable. Before we formulate the main result, 
let us recall what "intractable" means in computer science (Garey and John- 
son, 1979). An algorithm is called feasible if its running time T does not 
exceed some polynomial P(L) of the length L of the input data (in this case 
it is also said that this algorithm finishes its work in polynomial time). If  
the algorithm is not feasible, then normally its running time is equal to the 
exponential of L (2 L or something like this), and for L = 100 it exceeds the 
number of particles in the universe--so it is intractable. If we have a discrete 
problem, i.e., a problem where the possible set of answers is limited to a 
finite set, then in principle it is possible to solve this problem by analyzing 
all candidates for a solution. If  the possible solutions are all possible binary 
words of length n, then this lookthrough algorithm must analyze 2 n cases 
and is therefore intractable in any reasonable sense. Examples of discrete 
problems comprise all spheres of human activity: in mathematics the prob- 
lem of proving or disproving a hypothesis H consists in finding a proof of 
H or ~ H  whose length does not exceed some reasonable limit L, so in 
principle we can find this proof by analyzing all a L words of length L or less 
(here a is the number of symbols in our alphabet). In physics the main 
problem of explaining experimental data can also be in principle solved by 
enumerating all possible laws and testing whether they fit the experimental 
data or not. In other words, practically all creative human activity consists 
in solving discrete problems, so it is highly improbable that there exists an 
algorithm that can solve all discrete problems in reasonable time: such an 
algorithm would mean the end to science. So it is widely believed that such 
an algorithm is impossible. 

In the beginning of the 1970s it was proved that some discrete problems 
have the following properties: if we are able to solve them in polynomial 
time, then we are able to solve all discrete problems in polynomial time. In 
view of the above arguments, this means that it is highly improbable that 
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these problems can be solved in polynomial time. Therefore, such problems 
were called NP-hard or intractable. 

Main Theorem. The following problems are NP-hard: 
1. Given two finite metric spaces A, A', to find out whether there exists 

an isomorphic imbedding A ~ A '  or not. 
2. Given two finite space-time models A, A', to find out whether there 

exists an isomorphic imbedding A ~ A '  or not. 
3. Given two finite causal models A, A', to find out whether there exists 

an isomorphic imbedding A ~ A '  or not. 

As a corollary we get the following auxiliary result. 

Definition. Let e > 0 be any positive real number. A subset B of a metric 
space A is called e-distinct if d(b, b' ) is greater than or equal to e for all pairs 
of different points b, b' from B. The e-capacity of a metric space A is defined 
as the binary logarithm of the maximum possible number of elements in its 
e-distinct subset. 

Corollary. The following problems are NP-hard: 
1. Given a finite metric space A, a positive integer n, and a positive 

rational number e > 0, to find an e-distinct set with n elements in A. 
2. Given a finite metric space A and a positive rational number e > 0, 

to compute the e-capacity of A. 

This corollary was first announced in Kreinovich (1979a). 

Comment. Another example of a physically meaningful NP-hard prob- 
lem is the prediction problem in quantum mechanics (Kreinovich et al., 
1991). 

5. PROOFS 

Preliminary Remark. A finite causal model, i.e., a finite ordered set, is 
a particular case of the finite oriented graph. For nonoriented graphs it is 
known that the problem of whether an isomorphic imbedding exists is NP- 
hard: namely, the problem of whether it is possible to imbed a complete 
graph with m elements (so-called "clique") into a given graph G is NP- 
complete (Garey and Johnson, 1979). We show that this "clique problem" 
can be reduced to each of our three problems; therefore, the possibility to 
solve one of them in reasonable (= polynomial) time would lead to the 
possibility to solve the clique problem in polynomial time, and the clique 
problem is NP-hard. So this reduction proves that our three problems are 
also NP-hard. 
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Let us first show this reduction for finite causal models. Assume G is 
an arbitrary finite nonoriented graph with the set of vertices V. Let us 
construct a finite causal model C(G) as follows: its elements are pairs 
( v , - 1 ) ,  (v, 0), (v, 1), where v is a vertex of G, and (v, e )<  (v', e ') iff either 
v = v' and e < e', or e= - 1, e' = 1, and v, v' are connected by an edge in G. 
We want to show that G can be isomorphically imbedded into G' iff C(G) 
can be isomorphically imbedded into C(G'). 

It is easy to prove that if f :  G--*G' is an isomorphic imbedding of graphs, 
then the mapping f * :  C(G)--* C(G'), defined as f*(v, e)= (f(v), e), is an 
isomorphic imbedding of  finite causal models. 

Assume now that f :  C(G)~C(G') is an isomorphic imbedding of 
finite causal models. Let us construct the corresponding imbedding of  
graphs. 

Let us show that f t r ans fo rms  any element (v, - 1 )  into the element of 
the same type, i.e., into (v', - 1 )  for some v'. Indeed, according to the defini- 
tion of  C(G), we have (v, - 1 )  < (v, 0) < (v, 1). Therefore f (v ,  - 1 )  <f(v, 1), 
so there exist elements b, e such that f(v, -1)< b < c. But in C(G') such b, c 
exist only for the elements of  the type (v ' , - 1 ) .  So f ( v , - 1 ) = ( v ' , - 1 )  for 
some v'. Let us denote this v' by f*(v). So ( f * ( v ) , - 1 )  <b=f(v, 0 ) < c  = 
f(v, 1). 

From the definition of C(G) it follows that the property (v', - 1 )  < b < c 
is true only for b = ( v ' , 0 )  and c=(v', 1); therefore f(v,O)=(v',O) and 
f(v, 1) = (v', 1), hencef(v ,  e) = (f*(v),  e) for all v, e. It is now easy to check 
that i f f  is an isomorphic imbedding of finite causal models, then f *  is an 
isomorphic imbedding of graphs. 

So the problem of whether there exists an imbedding of a clique Go into 
a graph G is equivalent to the problem of  whether there exists an imbedding 
of  a finite causal model C(Go) into C(G). Therefore, the isomorphism 
imbedding problem for finite causal models is NP-hard. 

Let us now prove that the problem of  isomorphic imbedding of finite 
space-time models is NP-hard. To every causal model C we can put into 
correspondence a finite space-time model S(C) by setting t(a, b) equal to 
the minimal length of the monotone chain connecting a, b if such a chain 
exists, and 0 if it does not exist. One can check that all three conditions in 
the definition of  t(a, b) are fulfilled [so S(C) is really a space-time model], 
and that C(G)--* C(G') is an isomorphic imbedding of  the causal models iff 
it is an isomorphic imbedding of  space-time models S(C(G))--*S(C(G' )). So 
the isomorphism problem for space-time models is also NP-hard. 

For  finite metric spaces the proof  is even simpler. Let us fix some e > 0. 
To every graph G we can put into correspondence the finite metric 
space M(G) with vertices of G as points and the distance function 
d(a, b)=0 if a=b; d(a, b)=4/5e if the vertices a, b are not connected in G 
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and d(a, b) = e if a, b are connected. It is easy to check the triangle inequality 
and the fact that f :  G~G' is an isomorphic imbedding of the graphs iff it is 
an isomorphic imbedding of the corresponding metric spaces. QED 

Proof of the Corollary. In view of the reduction used in the proof of 
the main theorem, the clique problem is equivalent to the problem of finding 
an e-distinct set of n elements in M(G). QED 
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